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SUMMARY

We propose a new model and a solution method for two-phase two-fluid compressible flows. The model
involves six equations obtained from conservation principles applied to a one-dimensional flow of gas and
liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as
well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and
has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features
of the model include the existence of real eigenvalues and a complete set of independent eigenvectors.
Its numerical solution poses several difficulties. The model possesses a large number of acoustic and
convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use
relatively modern shock-capturing methods of a centred-type such as the total variation diminishing (TVD)
slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy.
Several numerical test problems are displayed in order to highlight the efficiency of the study we propose.
The scheme provides reliable results, is able to compute strong shock waves and deals with complex
equations of state. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is concerned with the numerical study for solving a system of balance laws modelling
one-dimensional compressible two-phase flow. The ability to efficiently evaluate two-phase flow
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phenomena is needed to understand many processes of practical concern. For instance, nuclear
reactor safety studies and pressure relief capabilities of many chemical reactors require this ability.
In general, the ability to predict these phenomena depends on the availability of valid mathematical
models and robust numerical methods. This is a very challenging task, as the numerical methods
must combine robustness and accuracy and cover a wide domain of physical conditions, including
the whole range of void fraction from single to mixture two-phase flow regime, and a wide range
of pressure conditions. Numerical methods [1–3] on which current generation of two-phase flow
codes used in industry is based are certainly robust but are known to suffer from excessive numerical
dissipation. This in turns limits our ability to improve physical modelling and generally our under-
standing of compressible two-phase flow processes. A two-phase flow problem can be formulated
by using a two-fluid model, depending on the degree of the dynamic coupling between the phases.
Early two-fluid models did not result in a system of hyperbolic equations [4–7]. Such models used
in practice with a degree of success lead to ill-posed initial-value problem and hence are physically
unacceptable. In order to make these models hyperbolic, some researchers introduce formulations
for coupling the two separated momentum equations, including space and time derivatives of phys-
ical quantities (virtual mass term, interfacial pressure, see [8–18]). Thus, the correct formulation of
the basic two-fluid equations and the appropriate closure relations have been discussed during the
past and, up to now, there does not exist a commonly agreed approach. Two-phase flows always
involve some relative motion of one phase with respect to the other. Therefore, a two-phase flow
problem can be formulated phenomenologically in terms of two velocity fields [19–21]. The diffi-
culties associated with the two-fluid model are greatly reduced by formulating a two-phase problem
in terms of extended thermodynamics which provides reliable results for modelling complicated
media with rapidly varying and strongly inhomogeneous processes [22–25]. The resulting model
is a conservative first-order quasi-linear symmetric hyperbolic system of field equations and allows
discontinuous solutions [26–29]. Crucial new aspects of this hyperbolic conservative model of two-
phase flow are the existence of real eigenvalues and a corresponding set of linearly independent
eigenvectors. This allows the application of modern numerical schemes [30] which make use of
the hyperbolicity of the flow equations.

Progress in numerical modelling of two-phase flow has been slower than for single-phase flow,
for which the last two decades have seen the development and maturity of high resolution numerical
schemes such as Godunov-type methods and efficient unstructured mesh techniques. It was in the
late 1980s and beginning of the 1990s that these advanced numerical methods were considered for
the modelling of various types of two-phase flow, in sectors ranging from solid combustion [31–35]
to nuclear reactor safety thermal-hydraulics [36–40] to oil transport [41–44]. In the past few years,
a number of shock-capturing schemes have been constructed to solve systems of conservation
laws [45–52]. These methods are characterized as being of first-order or by their higher accu-
racy in the smooth regions of the solution without presenting the spurious oscillations associated
with the conventional second-order schemes in the presence of discontinuities. Toro in [53] intro-
duced the centred total variation diminishing (TVD) methods which have the property that they
are second-order accurate and may be oscillation-free across discontinuities. Centred methods are
methods that do not require the explicit solution of the Riemann problem, i.e. they are not based
by the wave propagation direction. This feature is especially used for typical problems, arising in
two-phase flow modelling, where we often have to complete the equation model by extra equations.
These could be the balance equations for the gas volume and mass concentrations, and the relative
velocity balance law. Such types of systems involve more equations, but remain hyperbolic and
have the same structure. In this paper we describe a general method to the modern TVD scheme
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introduced by Toro [53] to hyperbolic conservation laws modelling compressible two-phase flow,
giving rise to a set of sufficient condition which are useful in checking or constructing second-
order TVD schemes. We propose to use slope limiter centre (SLIC) scheme. We emphasize that
the SLIC scheme has never been used to solve these models. The SLIC scheme is suitable for very
complicated problems for which the Riemann problem solution is unavailable or too complicated
as in the hyperbolic conservative two-fluid model case. This scheme uses three steps: (I) data
reconstruction, (II) evolution and (III) the Riemann problem. In our implementation, the evolution
step employs the solution of the Riemann problem to evaluate the first-order centred (FORCE)
flux of the hyperbolic conservative two-fluid model. The rest of this paper is organized as follows.
In Section 2 we present the two-phase flow model to which numerical study is considered, and
we look at the hyperbolicity of the model. The next section is devoted to the construction of the
numerical approach to the hyperbolic conservative two-fluid model. Following the method de-
veloped in [53] for conservation laws, we describe SLIC scheme. Finally, the application of the
described scheme to solve the two-phase flow problems is explained and numerical results are
presented in the last section. These results include examples for typical two-phase flow problems,
which confirm that the model gives excellent results. Clearly, a more detailed study of the mathe-
matical and numerical character of the two-phase flow equations are warranted and future studies
may lead to better understanding of the coupling of the various modes of two-phase flows.

Further details about the description, analysis and application of the model and the numerical
scheme described in this paper are presented in the PhD thesis of the first author [54].

2. TWO-PHASE FLOW-HYPERBOLIC CONSERVATIVE MODEL

Two-phase flow models have applications within several areas and are known for being quite
complicated both from a modelling and numerical point of view. Following Romenski [25], one-
dimensional two-phase flow with different phase velocities can be described by a conservative
two-fluid model six first order non-linear partial differential equations describing mass, momentum
and energy conservation for the mixture, a balance law for the volume concentration of the second
phase, a balance law for mass concentration of the second phase and a balance law for the relative
velocity between the two phases. The dynamics of two-phase flow is determined by these balance
equations which involve source terms for interphase exchanges of volume concentration and relative
velocity between phases. In addition, the relaxation of volume concentration to equilibrium state
and interfacial friction are chiefly responsible for the development of the flow.

The two-fluid model is widely used within the chemical reactors and it is well known that
modelling of flows involving mixtures is a difficult task. Another area of application for two-phase
fluid flows concerns, for example, safety of nuclear reactors which is an area of great importance for
the industrial field. Considering two-phase flow in the nuclear industry, it is convenient to identify
a class of physical phenomena such as pressure wave propagation through a gas and liquid flow.
Pressure wave propagation study is useful for safety reasons, for flow regulation and providing
information about flow properties. Further knowledge about pressure propagation can aid in flow
control because a change in flow rate or pressure at the inlet or outlet generates a pressure wave.
From a numerical point of view, the correct description of pressure waves require high-order
schemes possessing little numerical diffusion. In addition, it is important for the industry that the
schemes can produce solutions within a reasonable range of accuracy and time.
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The focus of this work is the numerical aspects: we will limit ourselves to consider a mixture of
two-phase gas and liquid flow. The effects of viscosity are assumed to be absent while there is no
mass transfer between the phases. The one-dimensional hyperbolic conservative model then takes
the following form [54]:

The mixture mass conservation equation is

�t (�) + �x (�u) = 0 (1)

The mixture momentum conservation equation is

�t (�u) + �x (�u2 + P + �urEur) = 0 (2)

The mixture energy conservation equation is given by

�t

(
�

(
E + u2

2

))
+ �x

(
�u

(
E + u2

2

)
+ Pu + �uurEur + �EcEur

)
= 0 (3)

In (1)–(3), t is the time, x is the flow direction (spacial coordinate), � is the volume fraction
of the gas phase, �= (1 − �)�1 + ��2 is the mixture density, �u = (1 − �)�1u1 + ��2u2 is the
mixture momentum and the subscripts 1 and 2 refer to the liquid and gas phases, respectively.
The conserved quantities in (1)–(3) represent the mixture mass, mixture momentum and mixture
energy. In addition, several closure laws must be given which involve the gas volume concentration
balance law, the mass gas concentration conservation law and the relative velocity balance law.

The gas volume concentration balance law is

�t (��) + �x (�u�) = � (4)

The source term � is found to be

�= −�

�
E� (5)

which describe the relaxation of volume concentration to equilibrium state with relaxation time �
(which can be a function of parameters of state).

The mass gas concentration conservation law is

�t (�c) + �x (�uc + �Eur) = 0 (6)

Finally, the relative velocity balance law is

�t (ur) + �x (uur + Ec) = � (7)

where the source term � is the interfacial friction defined as

�=−�c(1 − c)ur (8)

where � can depend on the parameters of state.
To close system (1)–(3) and (4)–(7) we define the pressure as

P= �2E� (9)
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and the mixture internal energy (EOS) as

E(�, �, c, ur,S) = e(�, �, c,S) + c(1 − c)
urur
2

(10)

which is determined by the equations of state for the air and water [54].
Now if we let

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

��

�u

�c

ur

�

(
E + u2

2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F(U) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�u

�u�

�u2 + P + �urEur

�uc + �Eur

uur + Ec

�u

(
E + u2

2

)
+ Pu + �uurEur + �EcEur

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

and

S(U) = [0,�, 0, 0, �, 0]T (12)

then (1)–(3) and (4)–(7) can be written as a 6 × 6 system of conservation laws

�tU + �xF(U) = S(U), −∞<x<∞, t>0 (13)

Letting J denote the Jacobian matrix of F with respect to the conservative variables U, we can
write

�tU + J�x (U) = S(U) (14)

Generally, it is difficult to express the flux function F in terms of conservative variables. From
a physical point of view, the vector of conservative variables U is not a convenient state vector
with which to work. The closure laws are formulated in terms of physical variables (primitive
variables). Also, from a numerical point of view, numerical schemes based on conservative variables
will require some iterative procedure to transform these variables into primitive variables for each
calculation. This leads us to consider other alternatives based on primitive formulations. For the
one-dimensional conservative two-fluid model, one possible primitive formulation is the vector W

defined as

W =[�, �, u, c, ur,S]T (15)

Thus, in quasi-linear form we have [54]
�tW + A(W)�xW = S̄(W) (16)
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where the matrix A(W) is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u 0 � 0 0 0

0 u 0 0 0 0

1

�
(P� + c(1 − c)u2r )

P�

�
u

1

�
(Pc + �(1 − 2c)u2r ) 2c(1 − c)ur

PS

�

c(1 − c)
ur
�

0 0 u + (1 − 2c)ur c(1 − c) 0

ec� e�c ur ecc − u2r u + (1 − 2c)ur ecS

0 0 0 0 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

and the source terms are

S̄(W) =
[
0,

�

�
, 0, 0, �, �

]T
(18)

where

�=− 1

E�
(E�� + Eur�)�0

is the entropy production.
Before discussing the numerical aspects, we need to study the mathematical properties of the

model. We begin with the hyperbolicity of the model in processes without dissipation, i.e.

�tU + �xF(U) = 0, −∞<x<∞, t>0 (19)

Let us introduce the set � of physically admissible states, �={U ∈ R6; �>0,S>0, �, c∈]0,
1[, u, ur ∈ R} and denote the speed of sound for the mixture two-phase flow by a. Then we can find
a positive number u�

r such that for any U that lies in the set �� defined by �� ={U ∈ �; |ur|�u�
r }

and the eigenvalues �j, 1�j�6 are real and for ur small enough given by [54]
�1 = u − a1 + Y(a1)ur + O(u2r ) (20)

�2 = u − a2 + Y(a2)ur + O(u2r ) (21)

�3 = �4 = u (22)

�5 = u + a1 + Y(a1)ur + O(u2r ) (23)

�6 = u + a2 + Y(a2)ur + O(u2r ) (24)

where

a1 = 1√
2

[
−�02 +

√
(�02)

2 − 4�00

]1/2

a2 = 1√
2

[
−�02 −

√
(�02)

2 − 4�00

]1/2
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and

Y(ai) = �11 + �13a
2
i

2(�02 + 2a2i )
, i= 1, 2

with

�13 = 2(1 − 2c)

�02 = −(P� + c(1 − c)ecc)

�11 = 2(2�c(1 − c)ec� − (1 − 2c)P�)

�00 = c(1 − c)(P�ecc − Pcec�)

Moreover, the corresponding eigenvectors of system (19) in the system of variables W can be
chosen as

K±(W) = k

⎛
⎜⎜⎜⎜⎜⎝

1

ϑ0 + ϑ1ur

ϑ2 + ϑ3ur

ϑ4 + ϑ5ur

⎞
⎟⎟⎟⎟⎟⎠ (25)

K0−(W) =
⎛
⎝0

1

⎞
⎠ , K0+(W) =

⎛
⎝1

0

⎞
⎠ (26)

where

ϑ0 = ± a1,2
�

, ϑ1 = −Y

�
, ϑ2 =− c(1 − c)ec�

c(1 − c)ecc − a21,2

ϑ3 = ± 2a1,2((1 − 2c) + Y)

c(1 − c)ecc − a21,2
, ϑ4 = ± ec�

a1,2
± c(1 − c)ec�ecc

a1,2[c(1 − c)ecc − a21,2]

ϑ5 = 1

�
+ 2c(1 − c)ec�ecc((1 − 2c) + Y)

[ecc(1 − c) − a21,2]2
± ϑ4

(1 − 2c) − Y

a1,2

The eigenvalues are all real and the eigenvectors K± and K0± form a complete set of linearly
independent eigenvectors. Thus, we have proved that the one-dimensional conservative two-fluid
model is hyperbolic and hyperbolicity remains a property of the conservative two-fluid model for
more general equations of state.

Finally, the basic structure of the solution of the Riemann problem as a set of elementary waves
can be described as follows; from the eigenvalues (20)–(24) we obtain

lim
ur→0

∇�±(W) =
[
±�a1,2

��
+ �Y

��
ur, 1, ±�a1,2

�c
+ �Y

��
ur,Y

]
(27)

lim
ur→0

∇�0±(W) = [0, 0] (28)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:393–417
DOI: 10.1002/fld



400 D. ZEIDAN ET AL.

So that

lim
ur→0

∇�±(W) · K±(W) = k

[
±�a1,2

��
+ �Y

��
ur + (ϑ0 + ϑ1ur) +

(
�a1,2
�c

+ �Y
��

ur

)
ϑ2

± ϑ3
�Y
�c

ur + (ϑ4 + ϑ5ur)Y

]
�=0 (29)

lim
ur→0

∇�0±(W) · K0±(W) = 0 (30)

Thus, the characteristic fields up to first order in ur associated with the eigenvalues �j(W),
j= 1, 2, 5, 6 are genuinely non-linear while those associated with �j(W), j= 3, 4, are linearly
degenerate. Having established formally this mathematical foundation, a sufficient framework
has been laid for the numerical study based on the Riemann problem. Many modern computa-
tional methods use approximate Riemann solutions in algorithms to enhance accuracy of numerical
solution. In the next section we provide the necessary ingredients for such a study.

3. THE NUMERICAL METHOD

The hyperbolic conservative two-fluid model presented in Section 2 is difficult to solve analytically
since the model possesses a large number of acoustic and convective waves. In addition the number
of equations will depend on the number of waves considered, and the closure laws supplied will typ-
ically vary and change the solution. Thus, a small modification of the model, will require us to repeat
the mathematical analysis and this does not seem practical. Therefore, it seems unnatural to look for
analytical solutions to the model. We must instead consider numerical approximations using modern
shock-capturing schemes. The method we will use must be flexible enough to handle the modifi-
cations of the model without relying on mathematical results obtained analytically. The numerical
method will give further insight into the model and will resolve both rarefaction waves and shocks.

Before presenting our numerical method for the hyperbolic conservative two-fluid model, we
review some of the basic theory of Godunov-type numerical schemes [30] based on the centred
methods. We discretize the x–t plane by choosing a mesh width�x and a time step�t , and we define
the mesh size �x = xi+1/2 − xi−1/2, with i = 1, . . . , M . Thus, for a given cell Ii = [xi−1/2, xi+1/2]
the location of cell xi and the cell boundaries xi−1/2, xi+1/2 are given by

xi−1/2 = (i − 1)�x, xi = (i − 1
2 )�x, xi+1/2 = i�x (31)

The time step �t (�t = tn+1 − tn) is calculated as marching in time proceeds and satisfies the
condition

�t =C
�x

S(n)
max

(32)

where C is the Courant–Friedrichs–Lewy (CFL) number with 0 < C�1 and S(n)
max is the maximum

wave speed present throughout the domain at time level n chosen

S(n)
max = max

i
{|�i |} (33)

where �i are eigenvalues corresponding to sound waves.
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In Godunov’s methods, the approximate solution Un+1, at time tn+1, is obtained by solving
Riemann problems at cell interfaces

Un+1
i = Un

i − �t

�x
[Fi+1/2 − Fi−1/2] (34)

where the numerical flux Fi+1/2 corresponds to the intercell boundary at x = xi+1/2 between i and
i + 1. The Godunov flux Fi+1/2 may be defined as the physical flux F(U) evaluated at the solution
Ui+1/2(

x
t ) along t-axis in the local coordinate, that is

Fi+1/2 = F(Ui+1/2(0)) (35)

which is the exact solution of the Riemann problem

�tU + �xF(U) = 0 (36)

U(x, tn) =
{

Un
i−1, x<xi−1/2

Un
i , x>xi−1/2

(37)

In practice, solving the non-linear Riemann problem for the hyperbolic conservative two-fluid model
may be difficult and time consuming because it requires some iterations for non-linear equations.
This suggests using approximate Riemann solvers to build more efficient Godunov-type numerical
methods. One of the more modern approximate Riemann solvers is a TVD-centred scheme such as
SLIC scheme. The SLIC scheme is a second-order extension of the FORCE scheme [53, 55]. To
solve the non-linear Riemann problem (36) for hyperbolic conservative systems, the SLIC scheme
results from replacing the Godunov upwind flux in the MUSCL–Hancock scheme [56] by the
FORCE flux. For the set of variables W in (15), the SLIC scheme uses three steps. We follow the
procedures given by Toro [30, 53] to recall these steps:

Step I: Data reconstruction, for a set of constant average data states Wn
i , the reconstruction of

piecewise constant data Wn
i into a piecewise linear distribution of the data is given as

Wi (x)= Wn
i + (x − xi )

�i

�x
, x ∈ Ii (38)

where xi = (i − 1
2 )�x is the centre of the computing cells Ii , �i are the slopes of six components

for the hyperbolic conservative two-fluid model defined as

�i = 1
2 (1 + �)Wi−1/2 + 1

2 (1 − �)Wi+1/2 (39)

where the parameter � ∈ [−1, 1] (for the hyperbolic conservative two-fluid model � = 0) and the
average between the intercell slopes is given by

Wi−1/2 = Wi − Wi−1, Wi+1/2 = Wi+1 − Wi (40)

Now the boundary extrapolated values are obtained by setting x = 0 and x = �x in (38)

WL
i = Wn

i − 1
2�i ; WR

i = Wn
i + 1

2�i (41)

which are the values of the vector function (38) at the left and right boundaries of Ii .
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Step II: Evolution of extrapolated values, the boundary extrapolated values WL
i and WR

i evolved
in each cell Ii by a time t = 1

2�t in terms of conservative variables according to

U
L
i = UL

i + 1

2

�t

�x
[F(WL

i ) − F(WR
i )] (42)

U
R
i = UR

i + 1

2

�t

�x
[F(WL

i ) − F(WR
i )] (43)

where UL
i and UR

i are computed from the boundary extrapolated variables WL
i and WR

i .
Step III: The Riemann problem, we solve the conventional, piecewise constant data Riemann

problem for the hyperbolic conservative two-fluid model with initial data

WL ≡ U
R
i , WR ≡ U

L
i+1 (44)

at each interface xi+1/2 to find the similarity solution Wi+1/2(
x
t ).

Now to obtain the Godunov flux (35) at the intercell position i + 1/2, we evaluate the FORCE
flux

FFORCE
i+1/2 = Fi+1/2(U

R
i , U

L
i+1) = 1

2 (F
LF
i+1/2 + FRI

i+1/2) (45)

where FLF
i+1/2 is the Lax–Friedrichs flux given by

FLF
i+1/2 = 1

2
(Fn

i + Fn
i+1) + 1

2

�x

�t
[Un

i − Un
i+1] (46)

and the Richtmyer flux defined as

FRI
i+1/2 = F(URI

i+1/2) (47)

URI
i+1/2 = 1

2
(Un

i + Un
i+1) + 1

2

�t

�x
[Fn

i − Fn
i+1] (48)

To avoid the expected spurious oscillations, a TVD constraint is enforced in the data reconstruction
step by limiting the slopes �i by �̄i in (38) with the limited slopes

�̄i = 	�i (49)

where 	 = 	(r) is the slope limiter chosen as

	(r)

{ = 0, r�0

�min{	L(r), 	R(r)}, r>0
(50)

where

	L(r) = 2
i−1/2r

1 − � + (1 + �)r

	R(r) = 2
i+1/2

1 − � + (1 + �)r

r = �i−1/2

�i+1/2

(51)
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and


i−1/2 = 2

1 + C
, 
i+1/2 = 2

1 − C
(52)

There exists a variety of limiters that can be used to calculate the slopes in the SLIC scheme.
We refer to [30] for a detailed description of the available limiters. In this paper we will only
use SUPERBEE limiter which is known to be overcompressive. For limiting values of 
i−1/2 and

i+1/2 one may eliminate the dependence on C and setting 
i−1/2 = 1= 
i+1/2 in (51) to obtain a
slope limiter that is similar to the SUPERBEE flux limiter given by

	sb(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if r�0

2r if 0�r� 1
2

1 if 1
2�r�1

min{r, 	R(r), 2} if r�1

(53)

4. TEST PROBLEMS AND NUMERICAL RESULTS

In this section we present and discuss seven numerical test problems. The main purpose is to
illustrate the capabilities of the numerical method to capture pressure wave propagation in two
and three dimension and to present a suite of one-dimensional test problems for the hyperbolic
conservative two-fluid model. In the first test problem, we consider an air–water mixture collision
which consists of a symmetric Riemann problem. In the second test problem, we present a grid
convergence study for the solution of the Riemann problem obtained in Test 1. In the third test
we consider pressure wave propagation for a constructed case and examine the effect of the initial
data mixture velocity on the behaviour of these waves. In the fourth test problem, we consider a
relaxation of volume concentration to study the effect of this relaxation on the air–water mixture
collision. In the fifth test problem we consider additionally an interfacial friction source term in the
air–water mixture collision. In the sixth test problem we consider a two-phase shock-tube problem
which consists of a Riemann problem for the hyperbolic conservative two-fluid model. Finally, in
the last test problem we consider a 2-left and 2-right rarefactions and study the symmetric Riemann
problem.

The air–water mixture EOS [57] is governed by EOS (10) and determined by the equations of
state for the air and water. The air phase is governed by the perfect gas EOS [58, 59]

e2 = A2

�2 − 1

(
�2
�02

)�2−1

exp

(
S

c2V

)
(54)

The EOS for water is defined as follows:

e1 = A1

�1 − 1

(
�1
�01

)�1−1

exp

(
S

c1V

)
+ A0

�01
�1

(55)

which is the stiffened gas equation of state written in terms of density and entropy [58, 60]. In
all chosen tests, data consists of two constant states WL = [�L, �L, uL, cL, urL,SL]T and
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Table I. Constants for the numerical study of wave prop-
agation in compressible two-phase flow.

Parameters for the liquid and gas phases

�1 = 2.8 �2 = 1.4

�01 = 103 kg/m3 �02 = 1 kg/m3

c1V = 1495 J/kgK c2V = 720 J/kgK

A0 = 8.4999 × 105 m2/s2 A2 = 105 m2/s2

A1 = 8.5 × 105 m2/s2

WR =[�R, �R, uR, cR, urR,SR]T, separated by a discontinuity at a position x = x0 with �L and
�R computed by the given pressures PL and PR. The numerical solutions are found in the spatial
domain −10�x�10, which is discretized with M computing cells (M = 100 or M = 1000 for a
coarse mesh or a fine mesh, respectively). The Courant number coefficient is C = 0.9, boundary
conditions are transmissive, Smax is found using the simplified formula (33), the SUPERBEE limiter
was used to obtain second-order accuracy in space. The values for the time, pressure, mixture
velocity and spatial domain are: [t] = 10−5 s, [P] = 109 Pa, [u] = 103 m/s and [x]= 10−2 m. The
calculation have been carried out using the parameters defined in Table I. The numerical results
were then compared with a reference solution obtained using the SLIC scheme with a very fine
mesh [54]. In all test cases, as we shall see later, we compare the results with the Lax–Friedrichs
method which has much more numerical diffusion than the SLIC scheme.

4.1. Test 1: Air–water mixture collision

The purpose of this first test is to choose the reference solution for the numerical solution with
a very fine mesh and compare the numerical scheme described in Section 3 with this reference
solution as well as the standard Lax–Friedrichs method on the solution of the Riemann problem
for the hyperbolic conservative two-fluid model. The SLIC scheme is second-order accurate in
space and time and stable with Courant number c satisfying |c|�1. According to Godunov’s
theorem, spurious oscillations may still be produced in the vicinity of strong gradients. The
additional implementation of the TVD feature (total variation diminishing) renders the TVD SLIC
scheme quite accurate and stable everywhere. Therefore, computational experience [30, 54] sug-
gests that the TVD SLIC scheme with a very fine mesh, M = 1000, is the reference solution
for the hyperbolic conservative two-fluid model. Thus, in all the test problems we will compare
our results with the reference solution. The left and right states for this Riemann problem are:
PL =PR = 0.1, �L = 0.5= �R, uL = 0.4, uR = − 0.4, urL = 0= urR,SL = 0=SR with cL
and cR being calculated using the following relation:

c= ��2
�

As the data for the pressure is constant on the left and right states since the mixture velocity u is
symmetric, this is a symmetric Riemann problem. The solution of the symmetric Riemann problem
is schematically depicted in Figure 1, which consists of a symmetric wave pattern about the t-axis.
There are six wave families. The outer waves correspond to the non-linear fields associated with
the eigenvalues �1,2 = u−a1,2+Y(a1,2)ur+O(u2r ) and �5,6 = u+a1,2+Y(a1,2)ur+O(u2r ), where
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Figure 1. Structure of the exact solution of the symmetric Riemann problem in the x–t plane for the hyper-
bolic conservative two-fluid model. There are six wave families associated with the eigenvalues (20)–(24).
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Figure 2. Numerical solution of the Riemann problem. Pressure distribution in three-dimension at t = 3.

ai (i = 1, 2) is the speed of sound of the mixture. The middle wave families correspond to the
linearly degenerate fields associated with multiple eigenvalues �3,4 = u, which in this problem is
�3,4 = u = 0. It is impossible to construct an exact solution for the Riemann problem in a general
case. However, for the states WL and WR we know that the solution is composed of six waves
which are either shock, rarefaction or contact discontinuities separated by constant states. Because
no analytical solution is available numerical evidence [54] shows that there are four symmetric
shock waves travelling in opposite directions that have become shock waves and trivial contact
discontinuities centred at x = x0 = 0 as shown in Figures 2 and 3. The benefit of shock wave
capturing is more clearly seen in Figure 4 in comparison with Figures 2 and 3. In Figure 4 we
give a comparison between the SLIC and Lax–Friedrichs methods for the pressure. In Figure 5 we
show the effect of the initial pressure (PL =PR = 0.0001, 0.001, 0.1) on the waves propagation
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Figure 3. Pressure contours for the Riemann problem at t = 3.
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Figure 4. Numerical solution (symbols) for pressure at time 3. SLIC and Lax–Friedrichs methods are
compared with the reference solution at 1000 cells.
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Figure 5. Numerical solution (SLIC scheme). Effect of the initial pressure
on the structure of the solution at t = 3.

to the left and right after the collision. The increase in the pressure generates a left-going two-shock
waves and right-going two-shock as shown in Figure 5.

4.2. Test 2: Grid convergence study

Since no analytical solution is available, a grid convergence study is performed in order to gain
some insight into the structure of the solution and to test the convergence and the stability character
of SLIC scheme described in Section 3. In this test case the initial conditions for the Riemann
problem are chosen as in Test 1. A series of 7 meshes, from 100 to 1000 cells, have been considered
in this study. From the results plotted in Figure 6, one can identify a two-shock waves propagating
to the far left and to the far right, and a contact wave in the middle of the structure through which
the pressure remains constant. An interesting feature of the study shown in Figure 6 is that there are
no oscillations at the discontinuity of the pressure when the meshing is refined. This study clearly
demonstrate the ability of the SLIC scheme to capture discontinuities.

4.3. Test 3: Pressure wave propagation

Results of the Test 1 show the pressure wave splitting in the two shock waves. The purpose of this
test problem is to study the structure of the pressure wave and its dependence on the value of the
pressure. Such a problem should be considered by the study of Hugoniot shock conditions; but this
problem is a subject of further research. Here we present results of calculations of pressure waves,
which satisfy the Hugoniot conditions numerically. To do this we use the values of parameters of
state in the star region in the Test 1, which correspond to the values behind the shock wave on the
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Figure 6. Riemann problem: grid convergence study for the pressure profile with the SLIC scheme at t = 3.

Hugoniot curve. We take these values as the initial data on the left side in the Riemann problem.
The pressure initial value from the right side is set equal to 0.1. We are interested in simulating a
pressure wave generated by increasing the mixture velocity from 0.1 to 0.4 and setting the obtained
star states equal to the left data, i.e. W� = WL in each case of the simulation. If we recall Test 1,
we notice that there are right-going two-shock waves in the mixture region (see Figure 4). It is
clear that the velocity of the shock waves is equal for all different cases where the mixture velocity
increases. The amplitude of the second wave with less velocity increases as the pressure behind the
wave becomes stronger. The increase in the mixture velocity generates kinks in the shocks for the
pressure solution as shown in Figure 7. These kinks at uR = 0.4 are referred to as ‘start-up errors’
and were first reported by Woodward and Colella [61]. In addition, a strong two-shocks will form
which continue to travel to the right in the mixture two-phase region with reduced mixture velocity
as shown in Figure 7. These results were obtained by the SLIC scheme with M = 300 cells.

4.4. Test 4: Relaxation of volume concentration

A source term is considered in Test 4 to study the effect of the relaxation of volume concentration
on the pressure wave propagation. The source term in the volume concentration equation (4)
describes the relaxation of volume concentration to equilibrium state with relaxation time �; that
is the pressures for the phases are equal. In this test problem, the initial conditions are chosen
as in Test 1 where pressure is kept constant and equal to 0.1 at the left and right states. For the
numerical calculations, the SLIC scheme tested is as explained in Section 3. The results are shown
in Figure 8. We have chosen to present plots of the pressure. In Figure 8, it is seen that the effect
of � at t = 3 has a decreased amplitude due to the physical attenuation caused by the interphase
exchange of volume concentration (�−1 = 0.1, 1.0, 10).
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Figure 7. A closer look at the strong 2-shocks propagating to the right
obtained with the SLIC scheme at t = 3.
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Figure 8. Effect of the relaxation of volume concentration � on the pressure.
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4.5. Test 5: Effect of volume concentration relaxation and interfacial friction

The purpose of this test problem is to evaluate the capabilities of the SLIC scheme to compute
pressure wave propagation with source terms. In this test case we study the effect of the source terms
on the hyperbolic conservative two-fluid model. The source terms correspond to the relaxation of
volume concentration to equilibrium state with relaxation time � and to the interfacial friction � as
expressed in (8) with � defined as

�= 1

8
CD

�2

�2
|ur| (56)

where the drag coefficient CD = 500, and �2 = (c�)/� is the air mass density.
As mentioned before the relaxation of volume concentration and interfacial friction are chiefly

responsible for the development of the flow. Three computations were performed on a mesh
of 100 cells, using the SLIC scheme, and for three values of S(W), S(W) = (0, 0, 0, 0, 0, 0),
S(W) = (0,�, 0, 0, �, 0) and S(W) = (0,�, 0, 0, 0, 0). Figure 9 shows that the effect of the source
terms on the pressure wave propagation is significant.

4.6. Test 6: Mixture two-phase shock-tube problem

We consider a shock tube filled with a water–air mixtures under high pressure at the left and
with lower pressure at the right. This test consists of a Riemann problem for the hyperbolic
conservative two-fluid model without a source term and with the left and right states defined as
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Figure 9. A closer look to the effect of source terms with relaxation time � and interfacial friction � on
structure of the solution of the Riemann problem (pressure).
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Figure 10. Solution of the Riemann problem for the air–water mixture shock tube. SLIC and Lax–Friedrichs
methods (symbols) compared with the reference solution (line) at 1000 cells with t = 3.

PL = 0.1,PR=0.01, �L=0.4, �R=0.6, uL=uR=0, urL=urR = 0, cL = 0.082, cR = 0.039,
SL =SR = 0. A mesh with 100 cells is used to show the solution numerically. The corresponding
results are shown in Figure 10 at time t = 3. Figure 11 shows results for the same test problem
where �L = 0.0 and �R = 1.0 at time t = 2.

Bearing in mind that the reference solution is obtained using the SLIC scheme with a very fine
mesh [54], the numerical results for the SLIC and Lax–Friedrichs schemes are compared with the
reference solution for both test problems. As expected, the SLIC scheme gives a much sharper
result of discontinuities compared to the Lax–Friedrichs method.

4.7. Test 7: Four-rarefactions test problem

This test problem consists of a symmetric Riemann problem for the hyperbolic conservative two-
fluid model with the left and right states given asPL = 0.1=PR, �L = 0.5, �R = 0.5, uL =−0.1,
uR = 0.1, urL = urR = 0, cL = 0.1178, cR = 0.1178,SL =SR = 0. As previously stated, our
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Figure 11. Solution of the Riemann problem for the air–water mixture shock tube. SLIC and Lax–Friedrichs
methods (symbols) compared with the reference solution (line) at 1000 cells with t = 2.

reference solution is a SLIC scheme with a very fine mesh. The numerical solution of the
symmetric Riemann problem consists of four symmetric rarefaction waves and a trivial con-
tact discontinuity at x = x0 = 0. Figure 12 shows a comparison between the SLIC and
Lax–Friedrichs methods at time t = 3. The dip in mixture density and concentration produced
in the vicinity of the trivial contact discontinuity is due to spurious mixture density pertur-
bation and well-known anomalies of hyperbolic systems. We do not know or have analytical
results for this problem but numerical computations consistently show erroneous solutions for
this case. An important conclusion that is valid for this test problem, anticipated from the
numerical solution, is that anomalies in the conservative methods deployed here, take the form
of a mixture density perturbation in the vicinity of trivial contact discontinuities. Anomalies
reported here do affect other hyperbolic systems such as Euler equations, artificial compressibility
equations associated with steady incompressible Navier–Stokes equations and equations of
Magnetohydrodynamics [62].
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Figure 12. Solution of the Riemann problem for the four rarefaction waves. SLIC and Lax–Friedrichs
methods (symbols) compared with the reference solution (line) at 1000 cells with t = 3.

5. CONCLUSIONS

In this study, we have examined the mathematical character of a hyperbolic conservative two-phase
flow model and issues relevant for the development of a robust numerical solver. The model is
based on the extended thermodynamics approach and given by a non-linear symmetric hyperbolic
system of partial differential equations written in conservative form. A characteristic analysis reveals
that the system of equations is hyperbolic with six real eigenvalues. Through the analysis of the
eigenstructure, it is shown that two of the eigenvalues are equal to the mixture velocity whereas the
other eigenvalues correspond to the acoustic wave propagation for the mixture. Through a detailed
analysis, the derived eigenvectors and the characteristic fields corresponding to the acoustic waves
are shown to be genuinely non-linear while the last two are linearly degenerate. Moreover, the
model allows the application of modern shock-capturing methods of centred type. Since the model
possesses a large number of acoustic waves, it is not easy to upwind all these waves accurately and
simply.

We have developed a TVD slope limiter centred scheme SLIC for a wave propagation in
compressible two-phase flow model which describes a mixture of air and water. The concept of
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TVD-centred schemes totally avoids the details of the Riemann problem solution. The method
developed in this paper can be seen as a formalization of the SLIC scheme suggested by Toro [53]
for hyperbolic conservation laws. The centred schemes represent a competitive alternative to the
existing upwind schemes for simulating gas–liquid flow. The developed scheme has been applied to
the calculation of one-dimensional mixture of air and water two-phase flow to study the Riemann
problem numerically. The high-resolution property of the scheme was tested in standard two-phase
flow problems. In particular, it has been demonstrated that the SLIC scheme gives a very accurate
numerical solution of the wave propagation as demonstrated through the test problems presented in
this paper. This is an essential property in order to obtain accurate simulation of gas–liquid flow. In
these test problems the source terms have a strong influence on the solution and therefore the said
test problems are an excellent reference to test the stated theory; they are useful in showing the
performance of the SLIC scheme under extreme conditions which assure high-quality results under
more ordinary circumstances. Numerical results show that the derived SLIC scheme is robust
with the ability to capture solutions accurately. Additionally the interest of this paper has been
on the development of high-order numerical schemes with a capacity to recognize anomalies of
conservative methods for inhomogeneous hyperbolic conservation laws arising in two-phase flow
models.

Currently used non-conservative two-phase two-fluid flow models are of importance to industrial
applications. The mathematical properties of these models are still poorly developed. Moreover, the
governing differential equations are complicated and even ill-posed in some models. This stresses
the need to develop new models and to have a variety of numerical schemes to investigate their
properties. Overall, in this paper, we have shown that through a deeper understanding of numerical
schemes of conservation laws, one can develop models and schemes which reveal an improved
performance at dealing with realistic two-phase flow problems.

Ongoing work is to further study and generalize this numerical study to the hyperbolic
conservative two-fluid model in a natural way using Riemann solutions. Moreover, further work is
planned to extend this study to construct an exact [63] and modern approximate Riemann solvers
such as Harten, Lax van Leer and Contact (HLLC) that was developed for the simplified two-fluid
model [64] which allows the application of Godunov-type methods of upwind-type such TVD
weighted average flux (WAF) scheme which is expected to provide an efficient way to calculate
more realistic two-phase flow problems. However, it requires a good understanding of the math-
ematical properties of the hyperbolic conservative two-fluid model. Even though the analysis has
not been carried out, some promising results have been obtained in the one-dimensional case [54].
Also an extension of this study to 2D and 3D two-phase flows would be beneficial as some practical
problems cannot always be reduced to one-dimensional simulations (depressurization of 2D and
3D pressure vessels, for instance).

This numerical study seems very promising for the numerical solution of two-phase flows as
shown by the numerical results for standard two-phase flow problems. As a conclusion, the SLIC
scheme turns out to be a very interesting scheme for more complicated models like the hyperbolic
conservative two-fluid model studied in this research.
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